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The C—C Bond Is Stronger than the C—CI Bond in CH3COCI
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The C-C and C-CI bond dissociation energieBg at 0 K, in CHCOCI are determined from the recent,
accurate experimental enthalpies of formation fors;CBCI, CH;, COCI, CHCO, and Cl. Do(C—C) is 85.9

=+ 0.8 kcal mot?, andDo(C—Cl) is 83.04 1.0 kcal mof?. This suggests that the-& bond is stronger than
the C-CI bond in CHCOCI, unlike what has been assumed in several recent publications on the
photodissociation of CECOCI. Results from recerdab initio calculations agree with this order of bond

dissociation energies.

Photodissociation of acetyl chloride has attracted enormous experiments by Butler's group. They optimized the geometries

interest recently-® It leads to preferential cleavage of the-Cl
bond over that of the €C bond. In organic photochemistry

at (U)HF/6-31G* and carried out single-point MP2 calculations
for energies. Their results for the bond energies were 81.1 and

texts, it has been cited as an example for the Norrish type 1 87.5 kcal mot? for C—Cl and G-C respectively, predicting
photochemical mechanism involving the preferential cleavage the C-C bond to be stronger than the-Cl bond. Wiberg et

of the weaker (&Cl) bond? Butler and co-workers recently

al** have, however, estimated the-Cl bond energy at the

initiated thorough experimental investigations on the photodis- same level with the MP2 optimized geometry, and they reported

sociation of acetyl chloride and related compouh#ésTheir
experiments clearly demonstrated the preferentialOCbond

dissociation on photolysis at 248.5 nm. However, the photo-

a value of 87.6 kcal mol. They did not estimate the-@C
bond energy. Interestingly, they have also done single-point
calculations at a higher level with the MP2/6-31G* geometry

fragment angular distribution was highly anisotropic suggesting and the C-ClI bond energy at the MP3/6-3tH#G** level
that the dissociation was impulsive, occurring in a subpicosecondlowered to 76.2 kcal mol.

time scale on a singlet excited state. The usual Norrish type |

For the ground state GEOCI, the 1,2-HCI elimination

mechanism involves internal conversion to the ground state or channel is more important, and its activation barrier was

intersystem crossing to the lowest triplet state from which the estimated as 48.2 kcal mdlat the (U)HF/6-31G*//(U)MP2/
dissociation occurs and the photofragment angular distribution 6-31G* levell® We have studied the HX elimination from

is isotropic! In their original communicatioh Butler and co-
workers estimated the-GCl bond energy as 83 kcal mdlfrom

the available experimental enthalpies of formafioriThey
assumed the €C bond dissociation energy to be around 80
kcal mol, which was the estimated € bond energy in
acetoné. This assumption had continued in their detailed paper
where it was stated that “©Cl cleavage should not be cited as
an example of fission of the weaker bord,the C-Cl bond is

at least as strong as the-€C bond.

haloethanes in detail using the infrared chemiluminescence
techniquet213 We are currently investigating the unimolecular
reaction dynamics of the chemically activated RCOCI *.

The FCHCOCI* could react by several molecular elimination
pathways as well as ©C and C-Cl bond dissociation
pathwaysi* Accurate estimates of the barrier energies for the
different unimolecular reaction pathways were needed to
ascertain the importance of the different channels. Again,
Sumathi’s calculations on FGBOCI at the (U)MP2/6-31G*//

Hess and co-workers investigated the photodissociation of (UYMP2/6-31G* level predicted the -©Cl bond (78.4) to be
acetyl chloride by photofragment imaging and have confirmed weaker than the €C bond (82.5}* As the accuracy of the

the anisotropic angular distribution of the Cl photofragnieht.
They also observed GHand CO fragments from secondary

MP2/6-31G* bond energies is questionable, we looked for
experimental enthalpies of formation for all the radicals involved

dissociation of acetyl radicals, and their angular distribution was to corroborate thab initio estimates. Accurate enthalpies of
isotropic. This observation showed that the primary dissociation formation are now available for GHCOCI, CHCO, Cl, and

involved C-Cl cleavage only. Following ref 1, they noted that
“the weaker € C bond is expected to break preferentiallyeo
the stronger G-Cl bond.® Very recently they have studied
the photodissociation of solid GBOCI and identified that the
HCI elimination is more important for solid GEOCI> Here
again they continued to assert that the @€ bond is weaker
than the G-Cl bond. Lee and co-worketrsised photofragment

CH3COCI, which make the calculation of the-© and C-CI

bond dissociation energy in GBOCI straightforward. We
estimate the €C bond energy to be 85.2 0.8 kcal moi?

and the G-Cl bond energy to be 838 1.0 kcal mot?, 2.9+

1.3 kcal mot? less than the €C bond energy. The thermo-
chemical data used here are summarized in Table 1 and
discussed below.

translational spectroscopy to study this process and the second- For CH; and Cl radicals, the enthalpies of formation are most

ary dissociation of CECO to give CH and CO. They also
emphasized that thelissociation inolves exclusie a-cleavage
of the stronger G-Cl over the G-C bond.®

Sumathi and Chandtahave studied the dissociation dynam-
ics of acetyl chloride byab initio methods following the

TEmail: arunan@iitk.ernet.in.
® Abstract published ifAdvance ACS Abstractdjay 15, 1997.

certain and the JANAF tables lig&H°:(0 K) as 35.62+ 0.19

and 28.590+ 0.002 kcal mot?, respectively> For COCI, the
experimental values now appear to converge. Walker and
Prophet had determined tieH°(0 K) as—4 4 3 kcal mol™

in 196716 Wine and co-workefg have recently determined
the AH% to be —5.2 & 0.6 kcal mof?* at 298 K and—5.6 +

0.7 at 0 K. Atkinson et al® in their compilation have chosen
AH®¢(298 K) to be—4.1 (no uncertainty quoted) following
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TABLE 1. Enthalpies of Formation for the data, it is clear that the ©C bond is stronger than the—<CI
Radicals/Molecule bond in CHCOCI, unlike what has been assumed so far in the
species AH®{(0 K) AH°(298 K) ref literaturel=® However, it must be added that this reversal in
cl 28.590+ 0.002 28.992¢ 0.002 15 the bpnd strer\gths does not affgct the interpretation of the
CHs 35.624 0.19 34.82+ 0.19 15 experiments cited above. In closing, we refer to the excellent
CH;COCI —58.0+0.2 22 review article on bond energies by Berkowitz e®alvhich
—55.9+0.2 1® emphasizes the importance of bond energies.
COCI —5.6+0.7 —5.2+0.6 17
—4.1 18 Acknowledgment. | thank Prof. D. W. Setser who always
—4+3 16 insisted on using accurate thermochemical data. | thank Prof.
CH,CO -15+1.0 —-3.0+1.0 1F N. Sathyamurthy for bringing ref 5 to my attention and for useful
—2.4+£03 23 discussions. | thank Dr. R. Sumathi for permission to quote
—54+21 24 I | bef blicati
—055+ 0.6 22407 20 results on FCHCOCI before publication.
-1.8+1.0 21
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